Instructional Grouping: Examples and Issues

Carol Crumbaugh, Beth Frye, Bob Schlagal, Pam Schram
Woodrow Trathen

Stereotypes abound regarding ability grouping, typified by comments such as the following:

"Ability grouping harms students' self-esteem."

"Once placed in a group, always in a group."

"If teachers don't group by ability, they penalize the high-achieving students by holding them back."

"Students in the low-ability group cannot receive the same instruction as students in other ability groups."

These stereotypes prompt us to ask: Why should elementary school teachers group students for instruction? What grouping arrangements do children encounter across subjects? Do purposes for grouping differ across situations and subject areas? Do teacher educators foster in preservice teachers an appreciation of these questions?

The purpose of this Problems Court paper is to explore issues associated with instructional grouping (including ability grouping and its alternatives) in spelling, reading and mathematics in elementary schools. To this end, we describe three program examples with different grouping arrangements: ability grouping for developmentally organized word study instruction, instructionally differentiated reading instruction within a literature circle format, and heterogeneous grouping for discussion-based mathematics instruction. These examples provide a context to explore issues associated with grouping arrangements in elementary schools. Implications for instruction, research, and teacher education will be explored.
Theoretical Perspective and Research Literature

How and when to group students and for what purposes rank among the most important routine instructional decisions teachers make. Instructional grouping options include whole class, small needs-based groups, cooperative groups, pairs, and individuals (Radencich & McKay, 1995). These may be organized by ability, interest, subject matter, and so on. In essence, every teaching activity requires consideration of these arrangement possibilities matched to learning goals. However, often instructional grouping is viewed only in terms of whether or not to group by ability, without consideration of instructional goals.

Ability grouping has been a familiar aspect of elementary school since the turn of the century, yet more recently this practice has been questioned (Hiebert, 1983) and criticized (Allington, 1983). Reading, spelling, and math groups, even though still common, are no longer a staple in teachers' classrooms. Changes in teaching philosophy, instructional strategies, and teacher education programs have diminished the perceived role of ability grouping. For example, interactive teaching strategies encourage and enable changes in the way we think about instructional grouping because with proper prereading instructional support students can comprehend a wider instructional range of material. Preservice and veteran teachers express confusion about the role ability grouping should play in elementary school. The literature addresses only some of their concerns. Slavin (1987) reviews research on four types of ability grouping: (a) ability-grouped class assignment that arranges class assignments based on achievement scores on standardized tests; (b) ability regrouping for reading or mathematics that arranges assignments for instruction in particular subjects, using the rest of school time in
heterogeneous classes; (c) regrouping for reading across grade levels (Joplin Plan) that arranges assignments only for certain subjects, with grouping across grade level, assignments reviewed, and grouping adjusted (flexible assignment); (d) within-class ability grouping that rearranges (flexibly, e.g., Flood, Lapp, Flood, & Nagel, 1992) students in a class to focus on particular subject areas. Overall, research findings do not support ability-grouped class assignment. Barker-Lunn (1970) found no evidence for advantages to ability-grouped class assignment. Goldberg, Passow, & Justman (1966) found the presence of gifted students was beneficial for the achievement of most students in most subjects; the presence of low achievers was neither beneficial nor detrimental. Borg (1965) found that benefits for ability-grouped class assignments were restricted to the highest achieving students; results indicated that ability-grouped class assignments were detrimental to student performance for low achieving students. In general, research findings support heterogeneous rather than ability-grouped class assignments. For ability regrouping in math and reading, research findings are inconclusive, but they suggest that for regrouping to have any kind of positive effect on learning outcomes, instructional pace, materials, and teaching strategies must be adapted to meet students' needs. Simply regrouping without instructional considerations is ineffective. Analysis of the Joplin Plan indicates positive effects on achievement for both high and low achieving students in reading and math (Slavin, 1987). Few studies have measured the impact of within-class ability grouping on reading achievement. However, for mathematics instruction, within-class ability grouping has shown to be effective but only for mathematics computations, with no differences found in concept attainment and application. Slavin's (1987) analysis suggests the following: (a) students should be assigned to heterogeneous classes for most
of the day and be regrouped by ability only in subjects where there is a benefit to instructional pacing, material selection, and content organization; (b) grouping plans should be based on subject specific criteria, not general IQ or standardized test scores; (c) grouping plans should be flexible and allow student movement between groups; (d) teachers should vary level of material, pace, and content of instruction to correspond to students' levels of readiness, learning rate, and interest; and (e) groups should be kept small and should be regrouped often to meet instructional goals.

Barr (1995; Barr & Dreeben, 1991) suggests that within-class ability grouping in reading may be more important in primary grades when children are learning to read than in intermediate grades. In addition, she raises the possibility that ability grouping might make it easier for children to interact with materials they can read with ease, thereby increasing reading fluency. A benefit of small group instruction is that the teacher can provide more support and time for practice with low-group members, but the quality of that instruction is very important (Duffy, 1993). In support of this idea Barr (1995) states, "the activities in which children participate, the materials they read and write, and the teaching support they experience shape what they learn and their feelings about it" (p. 7).

Educational Significance

In general, the research literature suggests general guiding principles for ability grouping, but does not provide contextualized examples to instantiate these principles. With the lack of these kinds of studies, it is no wonder that teachers are confused about grouping. Grouping effects must be mediated by changes in teachers' instructional strategies (Slavin, 1987), and researchers need to document these changes to fully understand the issues embedded in grouping practices (Hiebert, 1987).
In the following sections, we provide descriptions of three programs that use instructional grouping in various arrangements and point out that these grouping arrangements depend on teachers’ instructional goals.

Example 1: Instructional Grouping for Spelling

Classroom teachers have long treated spelling as a whole group activity. This is perhaps because of the popular but mistaken view that spelling is a simple memory task and because spelling books come prepared for whole group use. Yet experts have long recognized that there is a high degree of variability among students' readiness for specific levels of word study. Recommendations for differentiated instructional grouping for spelling extend back to the time of Fitzgerald who argued that "The varying needs of individuals be considered." She urged teachers that "the learning of the gifted child... not be limited to that of the average, nor... the very slow child be overwhelmed in the hopeless undertaking of studying the normal allotment of words for the average child." (1951, p. 8).

Support for the importance of individualized instruction comes from research into the development of spelling ability among children (Henderson, 1981; Templeton & Bear, 1992). Emerging from a linguistic analysis of children's spelling errors (Read, 1975), this line of inquiry has demonstrated that spelling ability is a complex cognitive-linguistic task and that it develops gradually over an extended period of time. Further it has documented the fact that learners acquire the ability to spell by moving through a series of predictable stages of development. In these stages students make errors which reveal their working hypotheses about how the alphabet maps to sounds, to sound patterns, and finally to meanings. The progressive emergence of these identifiable stages
has been observed despite wide variation in types of instruction (Henderson & Beers, 1980).

Developmental research draws from and also confirms analyses of English spelling as a complex hierarchical system which children master through successive systematic approximations as they take in more and more information about the lexicon. As with all developmental phenomenon, however, individuals negotiate these changes at different rates. Because each successive stage of development carries forward patterns and principles learned in previous stages, it is important that students master the problems that confront them at each stage before trying to deal with the problems of the next. Using developmental methods of word study, clinicians have been able to enhance students' knowledge of orthographic patterns by designing word study based on the unresolved elements within their individual developmental levels (Ganske, 1998; Henderson, 1981; Invernizzi, Abouzeid, & Gill, 1994). Individualizing instruction in this way moves low-achieving spellers forward in the quickest way possible.

To individualize instruction for each student in class, however, is a difficult and time-consuming proposition. An alternative way to address differences can be found in the broader practice of instructional grouping for word study. Such groups can be formed by aligning children with others at the same level and creating word lists for them to study based on the types of orthographic features with which they are having difficulty (Bear, Invernezzi, Templeton, & Johnston, 2000; Ganske, 1998). This approach can be too demanding for many teachers: It requires that they understand developmental spelling as well as the basic organization of the spelling system itself. They must also have the time and resources to pull together various appropriate groups of words on a regular
basis. Another perhaps more teacher-friendly way to constitute instructional groups is by creating them around their instructional spelling level. But what are instructional levels in spelling? What reason might there be for exploiting them, and how might a teacher incorporate them into her teaching?

Instructional levels. Darrell Morris and a number of his colleagues have been investigating the issue of instructional level in spelling for some time. Analyzing the quality of student spelling errors on a diagnostic spelling test, Morris, Nelson, and Perney (1986) found that there was a strong correlation between the quantity and the quality of their errors. In line with similar findings for reading (Betts, 1936) and with clinical observations made for spelling (Henderson, 1990; Schlagal, 1982; 1992), Morris and his colleagues found that there was a marked deterioration of the quality of errors when students were scoring less than 40 per cent on a grade-level spelling test. That is to say, when performing within a range between 40 to 85% accuracy, errors tended to be well informed and predictable. Thus misspellings of the words “slammed” and “pebble” were likely to occur in the hard spots in the words: SLAMED and PEBBEL, for example. When scoring less than 40%, however, students made more errors per word, and the poorer quality of these errors at times obscured the target word. The errors SAM and PABL illustrate this. Although each of these latter errors can be explained along developmental lines, they reveal strategies that are insufficient to the task. In other words, the orthographic elements in the target words embody features beyond the reach of the early phonetic strategy shown in the misspellings. These findings lend support to the notion that there is an optimal instructional level for spelling instruction.
In a later study, Morris, Blanton, Blanton, and Perney (1995) tracked instructional and frustrational third and fifth grade students (as defined by scores on a curricular pretest) across a year of instruction in traditional spelling books. Students working at their instructional level learned and retained the bulk of the words they were taught. Students working at their frustration level (scoring less than 40 per cent on the pretest) did well on end-of-week tests but very poorly on pretests for the six-week review units (a strong measure of retention).

In a follow-up to the previous study, Morris, Blanton, Blanton, Nowacek, and Perney (1995) tracked low-achieving spellers for a year. Half of these students were taught in spelling books at their instructional level. The other half was taught in grade-level spelling books (at their frustration level). The results of this study revealed significant gains for the intervention group in mastering the instructional level word lists. However, retention of words studied by the comparison group was poor, mirroring the findings of previous study. Of significant note, the students who were taught in lower level texts made solid gains at their instructional level, but they also scored no worse than their peers on the grade-level posttest. In addition, the intervention group scored significantly better than the comparison group on a transfer test of grade-level words neither had studied. The authors suggest that by improving their knowledge of the words at a lower level of complexity, students were better able to learn something about the spelling system that helped them make better sense of more difficult words they had not studied.

Based on studies such as these, it appears that attention to instructional level is important for ensuring student progress. If teachers provide instructionally appropriate
lists for their weakest students, then significant gains can be made. For most teachers, this is most conveniently done in the context of commercially prepared basal spellers.

Basal spellers. Basal spellers offer the teacher several advantages. First they provide a ready and well-thought out resource for words. Second, there is an abundant history of research contributing to the evolution of the contemporary spelling series (Henderson, 1990; Horn, 1969; Schlagal & Trathen, 1998). Basal spellers offer lists of high use words presented in a sequence graded in difficulty. Difficulty is defined by (a) frequency of use, (b) frequency of spelling pattern, and (c) developmental norms. It is not difficult, then, for teachers to place students with words of appropriate difficulty based on simple measures of instructional level (Schlagal, 1996). A critically important trait of basal spellers is that lists are organized to highlight and teach patterns and principles of the spelling system. This organized structure has the potential to allow teachers to incorporate concept-building techniques into their teaching.

Implementing instructional groups for spelling. With the encouragement and support of the reading faculty at Appalachian State University, a number of teachers in western North Carolina have begun to incorporate instructional grouping into the spelling portion of their language arts curriculum. The critical first step in creating effective groups is assessing individual instructional levels. This is done by using a diagnostic spelling test, the Qualitative Inventory of Word Knowledge (Schlagal, 1982, 1996).

Once students' instructional levels have been determined, they are placed in groups (generally from two to three) with other students who are currently at the same level. Within these groups they work with words drawn from spelling books at an
appropriate level of challenge. The teacher, with the help of her assistant or a parent volunteer, typically does the following with each group:

On Monday, a pretest is given to assess students' readiness for the week's words. (If students are at their instructional levels, they should be spelling correctly about half the words on the list.) Students then self-correct their misspellings and copy the corrected version twice (Horn, 1969). Once that is completed, the teacher or assistant guides the students in each group through a word sort to highlight the targeted word patterns for the week.

On Tuesday, the students receive a copy of the week's words, which they sort into columns according to the patterns established during the previous day's guided sort. The teacher observes and checks the accuracy of the students' sort and assists if there are difficulties. Once this task is complete, students can join in pairs and play games such as “Bingo” or “Concentration” with their combined stack of words. Each game entails naming and matching words by pattern.

On Wednesday, the students pair up and do “Word Hunts” in printed material to find more words that fit the week's patterns. They may also do “Speed Sorts” with a stopwatch. This improves sight recognition as well as the quick grasp of target patterns. Each child may try to improve speed by repeating the drill a maximum of three times. Students may also play the “Race Track Game,” wherein the correct spelling of two words enables a player to move around a “race track” oval. Whoever makes a circuit of the track first wins.

On Thursday, students pair up and give each other practice tests on a dry erase board. One child dictates the words from their word slips while the other draws columns
for the words and writes them in the appropriate columns by target pattern. On Friday the end of week spelling test is given.

Activities such as those described above are engaging and useful for students. Students work hard because there are reasonable, concept-building tasks placed in game-like formats. The fact that different groups of students are working with different words does not appear to be an issue. Each group is engaged with the same interesting activities. And each is making progress because each is studying words at a level in which concepts can be mastered, thus building the foundation for the study of more complex words and patterns that extend from those foundations.

Conclusion. Research findings have been cited that validate the concept of instructional levels in spelling. Evidence has been presented demonstrating improved learning and retention when these levels are used to plan instruction. Although few teachers can tailor spelling instruction to meet every individual need in class, these needs can be met more broadly through some of the methods described above. If spelling instruction is to address varied developmental needs, then the use of instructional grouping and multiple lists can and should become part of ordinary elementary and middle school instruction.

Example 2: Instructional Grouping Through Literature Circles

Daniels (1994) describes literature circles as "small, temporary discussion groups who have chosen to read the same story, poem, article, or book. While reading, . . . each member prepares to take specific responsibilities in the upcoming discussion, and everyone comes to the group with the notes needed to [participate in the discussion]" (p. 13). We have taken Daniel's concept of literature circles and expanded it to include
differentiated reading material that is matched to students' instructional reading levels, a form of grouping.

Classroom teachers in elementary schools are faced with the overwhelming task of accommodating different instructional reading levels in their classrooms. A fifth-grade teacher may have students reading on third-, fourth-, fifth-, and sixth-grade levels. How does this teacher help students on so many different reading levels become more strategic and independent readers who are also motivated to read? One solution may be to group these students according to their instructional reading levels. The goals include increasing word recognition, fluency, comprehension, and self-esteem. For students who are reading below grade level, an additional goal would be to bring these students up to grade level through appropriate instruction and pacing while they experience quality literature in the form of real books. This contrasts with Allington's (1983) findings that students in low-track reading groups received instruction consistently poorer than that offered to better readers. As Dewey wrote, "Everything depends upon the quality of the experience which is had" (1938, p. 27). We assert that in classrooms where we have worked, literature circles formed by instructional reading levels foster a quality learning experience.

Formation of instructional literature circle groups. Teachers consider many factors when forming and organizing reading groups, among them ongoing assessments. Informal reading inventories, word recognition tests, and qualitative spelling assessments are helpful to teachers when establishing instructional leveled groups for literature circles. Ongoing assessments provide information to create flexible, fluid groups. As students show growth, new groups are formed, added to, and blended together; they are not labeled and tracked into one group for the whole year. Also, as instructional purposes
change, so do grouping arrangements. Teachers will find appropriate occasions for students to read a whole class novel and occasions for students in leveled groups to read different novels. It is instructional intent (purpose) that guides decisions about grouping for literature circles.

Characteristics of instructional literature circles. Generally, literature circles are small discussion groups formed on the basis of a student's instructional reading level. Usually, the circles are formed around a certain genre, theme, or author so that all of the groups have a common reading context. During a circle, students read, complete a written “job,” and come together to discuss a book. After the students read they complete their written jobs as either discussion director, passage picker, character sketcher, word wizard, or investigator. The discussion director develops questions for subsequent discussion about a certain section of the book. This student determines the important ideas and issues raised in the designated section of the book. The discussion director also designs questions that address the targeted ideas and issues. The passage picker selects significant passages from the reading, determines why they are important, calls other readers' attention to the passages, and then leads a discussion about the selected passages. The character sketcher develops a character map of a major character, using implied character traits by referencing the text. The word wizard searches the section of text for words that are key to understanding what is happening in the story, notes the page and sentence where they are found, then checks the dictionary to confirm word meaning. This student also illustrates the word on a card, and then leads a discussion about the contextualized meaning of the word and how the word contributes to the importance of the passage. The investigator examines other sources (e.g., newspapers, Internet,
encyclopedia, content and informational texts) that connect to the targeted text, and then
shares this information with the group. The teacher may conduct a mini-lesson (for
example, on literary elements to be incorporated into the jobs) for the entire class before
the students read the text in their groups. After students complete the written jobs, the
teacher checks their work.

It usually takes several weeks for a group to complete a literature circle. After the
circle is complete, the students in each group present an artistic impression of their book
to the whole class. They may act out a skit, conduct an interview, and create an ABC
book, a journal, or some other artistic impression.

The teacher takes on a facilitative role while students read. Because the groups are
formed for instructional purposes, the teacher flexibly determines her immediate task. For
instance, she may choose to read aloud with the students who need more support. The
teacher is there to scaffold, to teach "fix-up" strategies to those students who still are not
reading metacognitively. She may "think aloud," reread, read ahead to clarify, make
connections with the text, and model all of these strategies, while reading with the
students, in material that they can decode and comprehend. Once the text is read, purpose
questions and predictions created by the students before reading may be revisited. As
students become aware of these reading strategies and skills and as they become more
independent, the teacher begins to scaffold the instruction. These scaffolding strategies
fortify the quality of students' experience.

Conclusion. In our experience using literature circles with elementary students,
the tasks and instruction are similar regardless of the level of the group. Students learn to
think critically about literature that they can confidently read, write about, and discuss.
Inferior instruction in low groups is not an issue. We are aiming to teach students in their zone of proximal development (Vygotsky, 1978), where they are at the most desirable challenge level, one that is neither too simple nor too rigorous; in other words, at their instructional level. As they read text in these guided literature circle lessons, students eventually become independent and reading behaviors are internalized. Students are successful because they are not frustrated with the text, and their self-esteem increases because they are successful with the reading and writing tasks.

The underlying goal of these literature circles is to create successful, strategic, and independent readers, readers who can write about the text and lead a sophisticated discussion that facilitates learning and understanding. We wish to create for these students Deweyan (1938) experiences from which they believe they are better readers and writers and are motivated to read and succeed.

Example 3: Instructional Grouping in Mathematics

As society moved from the Industrial Age into the Information Age, it became necessary to give careful consideration to the content and methods of mathematics instruction. Mathematics instruction should focus on content (e.g., number & operation, algebra, geometry, measurement, and data analysis & probability) and process (e.g., problem solving, reasoning, communication, connections, and representations) (NCTM, 1989, 1991, 2000). A problem-centered approach to teaching mathematics allows ideas, strategies, and mathematical relationships to emerge and become the focus of discussion. Communication makes mathematical thinking observable. It encourages students to think about their own strategies and solutions for solving problems as well as to hear other alternative strategies and ways to solve a problem. Talking about mathematics in small
and whole group settings helps students identify gaps in their mathematical understanding as well as clarify their thinking. And, listening to students' thinking enables teachers to ask questions for clarification and to model appropriate mathematical language.

When all students are allowed to hear the various strategies that their peers use to solve mathematical problems, their problem solving and reasoning skills grow and develop. They also are allowed access to mathematical content that previously would have been denied. Teachers can develop concepts and skills through problem solving experiences rather than delaying problem solving until students have mastered a procedure.

Teachers who hold traditional views of what mathematics is and what it means to know and do mathematics often are adamant about the need to ability-group students for mathematics. Teachers who hold a more reform-minded view about the nature, content and pedagogy of mathematics are more likely to think about a heterogeneous view of grouping.

Making decisions about instructional grouping for mathematics depends upon the purpose and goal for the lesson. If one's purpose is to teach rote memorization skills it may be reasonable to temporarily rely upon ability grouping of students for math instruction. However, if the purpose is to develop mathematical thinkers who can make sense of mathematics, reason, problem solve, and communicate about mathematical situations, then a different pedagogy is needed.

An example to illustrate one purpose for heterogeneous grouping in mathematics follows. This example is frequently used in a methods course and models a discussion-
based mathematics lesson using the problem: Write down all of the ways you can represent 16. In response to this question, some students immediately write down strategies while others glance nervously around the room. Typically, some start with familiar mathematical equations (e.g., 8 + 8; 4 x 4); others draw pictures resembling the following groupings of four:

```
****  ****  ****  ****
```

Others may write, "age when you get your driver’s license." After students record their ideas, they are grouped according to the type of strategies used to work on this problem. Groups are created with a broad range of ideas because collectively the thinking is more powerful. When ideas are shared in this heterogeneous arrangement, individuals may subsequently draw from their bank of ideas. Thus we mix the "equation" people with the "pictorial" people and distribute those who were willing to think outside the mathematical world (in this example, "age when you get your driver’s license" or “16 candles”) across groups.

When children are given an open-ended problem like this they also approach it from different perspectives. Groups can be created so that they, too, may benefit from a wide range of ideas. As the group works together, thinking often transforms to include ideas from the world of mathematics to the world of music (e.g., sixteenth notes) to the world of language (e.g., sixteen, dieciseis [Spanish for 16]) to the world of cinema (e.g., Sixteen Candles). After brainstorming a list of ideas, students are asked to categorize their ideas using the examples to illustrate.

We can also focus on the mathematics within this problem by examining equations from the same operation to notice patterns (e.g., 0+16, 1+15, 2+14 . . . 15+1, 16
+0; 17-1, 18-2, 19-3, . . .) and also to introduce mathematical vocabulary such as finite and infinite sets. Selecting a problem that does not elicit preconceived responses and procedures allows for more creative mathematical thinking and also opens the door to the notion that there are multiple ways to solve mathematical problems. Everyone has "access" to a problem like this. It empowers students and allows them to successfully enter a mathematical problem. They then are able to hear others’ thinking that illustrates additional strategies that solve the problem equally well. And, at the same time new mathematical content is introduced. In this context, the purpose for grouping is to provide students with a broad range of ideas about a problem and thus extend and expand their understanding about the mathematical concepts within a problem situation.

Implications for Instruction, Research, and Teacher Education

The three program examples described above—ability grouping for developmentally organized word study instruction, instructionally differentiated reading instruction within a literature circle format, and heterogeneous grouping for discussion-based mathematics instruction—call into question the stereotypes about grouping that introduced this paper. The issue here is not ability grouping, it is instructional grouping. All three examples underscore one basic tenet: instructional grouping decisions depend on a teacher’s instructional goals. And in the three examples, all students, regardless of group, received similar instruction.

When the goal is to improve spelling ability or reading and comprehension, it is logical for teachers to group students at their instructional level, where they are academically stretched but not struggling. Whether acquisition of spelling ability or decoding text, students are experiencing a system that is organized hierarchically. Teachers
(and learners) move through it on a trajectory. As students learn, the goal is to find out what they know and what they need help with next. Many of the processes involved in reading and spelling are below consciousness and should work effortlessly and automatically. Developing automaticity requires practice at the optimal instructional level. A child struggling to decode words will not be able to fully attend to the meaning in a text; in this way decoding affects comprehension. Placing children together to read the same text when their reading skill differs denies some children access to the text’s big ideas because they cannot decode the text. And in order to reason about the text, children must have access to it.

It is also logical for teachers to re-group students for discussion of fairy tales or discussion of a mathematical concept such as composition of number (e.g., Write down all of the ways you can represent 16.). Or, teachers may work with a small cluster of learners who can reason about multiplication ideas but do not have multiplication facts memorized.

Whether the goal is to developmentally group students for spelling, reading, or multiplication facts, or to heterogeneously group them for the purpose of discussing a genre or a reasoning task in mathematics, all students need an entry point into the instruction in order to stretch their learning. Grouping need not be an all-or-nothing fixture in day-to-day instruction.

Within and across subject areas, teachers have instructional grouping decisions to consider, as do teacher educators who work with prospective elementary teachers. Regarding instructional grouping, teacher educators must help preservice teachers understand that decisions about instructional grouping can vary across content areas as
well as across goals for the lesson. In addition, preservice teachers must consider the
grouping experiences of students across the academic year. It is time for reading
educators and researchers to consider instructional grouping from a fresh perspective.

References

Allington, R. (1983). The reading instruction provided readers of differing

Foundation for Education Research in England and Wales.

Barr, R. (1995). What research says about grouping in the past and present and
what it suggests about the future. In M. C. Radencich & L. J. McKay (Eds.), *Flexible
grouping for literacy in the elementary grades*, (pp. 1-24). Boston: Allyn & Bacon.

Barr, M. Kamil, P. Mosenthal, & P. D. Pearson (Eds.), *Handbook of reading research*

way: Word study for phonics, vocabulary, and spelling instruction*. Columbus, OH:
Merrill.

Harper & Row.

of Experimental Education, 34*, 1-97.

